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A-STABLE RUNGE-KUTTA PROCESSES

F.H.CHIPMAN

Abstract.

The concept of strong A-stability is defined. A class of strongly 4-stable Runge—
Kutta processes is introduced. It is also noted that several classes of iraplicit
Runge-Kutta processes defined by Ehle [6] are A-stable.

1. Introduction.
The v-stage Runge—Kutta process for numerically solving the n-di-
mensional system y' =f(x,y), y(0)=y,, is given by

(1.1) Ym+1 = ym"'hWK: m=1,2,...,
where

Kl v
K=|:]| with kK, =1 (xm+c,.k, Yt zbi,.Kj),
K, =

and W=(wd,...,wl), with I the n x n identity matrix.
To study the stability of process (1.1), we apply it to the scalar equa-
tion y' =qy, Re(g) < 0. The resulting difference equation is

(1'2) Ymer = ym"'kWK
where
7
(1.8) K=1:]|y,+qh(b;)K .
q

DerintTioN 1.1. Process (1.1) is well defined if (1.3) has a unique solu-
tion for all ¢ with Re(q) <0.
Hence, for a well defined process, (1.2) may be written

Ymir = (L+9hW (I —qghB)le)y,,
= E(qh)ym ’

where e=(1...1)7 and B=(b;).

(1.4)
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DeriniTION 1.2, Process (1.1) is A-stable, in the sense of Dahlquist [5],
if |E(z)] <1 for all complex z with negative real part.

DreriNitioN 1.3. Process (1.1) is strongly A-stable if it is A-stable and
hmﬁe @00 E(z)=0.

If a process is not well defined, then E(z) is not defined at » or fewer
points in the left half complex plane. Rewriting F(z) as a rational funec-
tion

det (I —zB)+zW adj(I—2B)e  P(z)

B det (I —2B) k)

we see that an A4-stable process is well defined if P(z) and @(z) have no
common zeros in the left half plane. In particular, any 4-stable process
with a Padé approximation E(z) to exp(z), is well defined, and thus ali
processes considered in this paper are well defined.

2. Classes of A-Stable Processes.

Butcher’s [2] v-stage processes of order 2v, based on Gaussian quad-
rature formulae, have been shown to be A-stable by several authors
(see [6] and [7]). Although Butcher’s methods based on Radau and Lo-
batto quadrature formulae [3] are not A-stable, Ehle [6] has constructed
similar methods which he conjectured to be A-stable. The A-stability of
these processes is established in [4].

Table 2.1 summarizes some known classes of 4-stable processes. The
w; and ¢, are weights and abscissae of the appropriate quadrature for-
mula, and B=(b;), V=(c/1), C=(c/[j), N=(1/i) and D=diag(w;) are
all square matrices of dimension #.

Table 2.1. A-Stable Runge—Kutia Processes.

Class Quadrature formula B defined by QOrder
G {Butcher) Gaussian B=0Vy-t 20
14 (Ehle) Radau, ¢, =0 B=DYVT)y- YN -O)ID 2v -1
I1,4 (Ehle) Radau, ¢, =1 B=CV-1 ' 2v0—1
IIT, (Ehle) Lobatto B=0V-1 20 —2
111z (Ehle) Lobatto B=D-YVT)~YN - C)ID 2v—2
HI¢ (Chipman) Lobatto Equation (2.1) 202

The collocation methods of Wright [7] and Axelsson [1] based on
Gaussian, Radau and Lobatto quadrature formulae are equivalent to
class @, I, and III; processes respectively.
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In addition to Ehle’s class ITI, and III, processes, a third class can
be defined, based on Lobatto quadrature formulae. This class, referred
to as class I11,, is defined in the following way:

1. Choose w; and c; as the weights and abscissae of a v-point Lobatto

quadrature formula.

2. Choose b;;=w,, 1=1,2,...0.

3. Choose the remaining b;; by

612 Cl”_l
CL—Wy — ... ——
bis - .. by 2 v—1 1cy... o0\
(2.1) : D= : : S :
byg -+« by c,? et \le,...crn2
c@_wl T e e I
2 v—1

In [4] it is established that these processes are of order 2v— 2, and are
strongly A-stable since E(gh) in equation (1.2) becomes a second sub-
diagonal Padé approximation to exp (gh). Similarly it is noted that pro-
cesses in classes I, and I, are also strongly A-stable. Coefficients for
several processes in class I1I; are given in the appendix.

It is the author’s experience that these methods can be used to solve
stiff systems of ordinary differential equations at least as efficiently as
methods now in use. A future paper will deal with the implementation
of A-stable Runge-Kutta processes.

Appendix.
Coefficients for class III; processes, v < 5.

1 1 1 1 1
v=2 - —=10 v=3 - —— =10
2 2 6 3 6
1 1 1 35 111
z 3|t 6 12 12|32
11| 1 2 1
2 2 & 3 o'
1 2 1
6 3 6
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1 V5 V5 1
v=4 — _— — —_— 0
12 12 12 12
1 1 10—-7/5 V5 | 5—V5
12 4 60 60 10
1 10+ 7V5 1 V6 | 5+V15
12 60 4 60 10
5 1
- = bl — 1
12 12 12 12
1 5 1
12 12 12 12
7 2 7 1
v=5 — - = - — 0
20 60 15 60 20
3 1 29 47-105r 29— 30r 3 1—r
y = - — [ _ _—
7 20 180 315 180 140 2
7 47+ 105r 73 7 747 —105r 3 1
20 180( 16—> 360 ﬁ( 16 ) 160 2
204+30r 47+ 105r 29 3 1+7
20 180 315 180 140 2
49 16 49 1 .
20 180 45 180 20
1 49 16 49
20 180 45 180 20
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